Laser pulse compression and amplification via Raman backscattering in plasma
نویسندگان
چکیده
A simple theoretical model is proposed for the interaction between two counter-propagating laser pulses (a pump and a seed pulse) in unmagnetized plasma. Pulse compression and amplification are observed via numerical simulation. A one dimensional fluid model for stimulated Raman backscattering is proposed to investigate the pulse compression and pulse amplification mechanisms. To accomplish this, energy is transferred from the long pump pulse to a seed pulse, with a Langmuir plasma wave mediating the transfer. The study focuses on the intensity profile of the pump laser pulse. A Gaussian and a ring intensity profile are, separately, considered for the pump laser pulse.
منابع مشابه
Stimulated Raman backscattering of laser radiation in deep plasma channels
Stimulated Raman backscattering (RBS) of intense laser radiation confined by a single-mode plasma channel with a radial variation of plasma frequency greater than a homogeneous-plasma RBS bandwidth is characterized by a strong transverse localization of resonantly-driven electron plasma waves (EPW). The EPW localization reduces the peak growth rate of RBS and increases the amplification bandwid...
متن کاملChirped pulse Raman amplification in warm plasma: towards controlling saturation
Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to ...
متن کاملCompression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas.
Backward Raman amplification (BRA) in plasmas holds the potential for longitudinal compression and focusing of powerful x-ray pulses. In principle, this method is capable of producing pulse intensities close to the vacuum breakdown threshold by manipulating the output of planned x-ray sources. The minimum wavelength limit of BRA applicability to compression of laser pulses in plasmas is found.
متن کاملSlowly varying envelope kinetic simulations of pulse amplification by Raman backscattering
A numerical code based on an eikonal formalism has been developed to simulate laser-plasma interactions, specifically Raman backscatter (RBS). In this code, the dominant laser modes are described by their wave envelopes, avoiding the need to resolve the laser frequency; appropriately time-averaged equations describe particle motion. The code is fully kinetic, and thus includes critical physics ...
متن کاملObservation of Raman Gain in Reduced Length of Bismuth Erbium Doped Fiber
Raman amplification of a 49 cm Bismuth oxide (Bi2O3) as a nonlinear gainmedium based erbium doped fiber amplifier (EDFA) is reported in new and compactdesign in near infrared spectral regions. The bismuth glass host provides theopportunity to be doped heavily with erbium ions to allow a compact optical gain fiberamplifier design by using reduced fiber length and the 1480...
متن کامل